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SUMMARY

Numerical predictions of transient �ow and thermal �elds in a rectangular enclosure with two period-
ically moving vertical walls are presented. The combined in�uence of the movement of the walls and
the buoyancy as well on the �ow pattern and heat transfer performance is evaluated. The compressible-
�ow model is adopted, and governing equations are expressed in integral form and discretized on the
moving grids, which deform in resonance with the walls to accommodate the variation in the volume
of the enclosure. A two-stage pressure-correction scheme is applied for simultaneously determining the
distributions of absolute pressure, density, temperature, and velocity of the compressible �ow �eld in
the enclosure during the periodically stable periods. E�ects of the frequency, stroke, and the phase
angle of the wall oscillations on the �ow are of major concerns in this study. The frequency is ranged
between 5 and 25Hz and the dimensionless strokes (l=H) of the wall are varied from 0.4 to 1.0. Results
for Nusselt numbers on the walls as well as the dimensionless input work required to excite the wall
oscillation are provided. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Periodic �ow motion in a piston–cylinder assembly has received increasing attention in recent
years due to its relevance to a number of practical devices, including internal-combustion heat
engines, reciprocating compressors, and hydraulic pumps. These practical devices are equipped
with moving parts, which are referred to as the moving boundaries to the internal �uid �ow,
and in these devices the �ow problems are, in essence, more involved than those with only
stationary boundaries.
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Existing studies related to the moving-boundary problems may be categorized into two
kinds in accordance with the basic approaches used to deal with the boundary movement. In
the �rst kind of studies, the moving boundary sweeps over �xed grids in the inertial reference
frame. This approach is not suitable for �ows having large change in the volume of the
system since the number of grids will be increased and decreased during the expansion and
compression processes, respectively, and occasionally the grid number may become too large
or too small to provide accurate solutions. The second kind, on the other hand, uses moving
grids, which deform in resonance with the moving parts to accommodate the variation in the
volume of the system. A dynamic grid-generation method is required to yield the moving
grids. This approach allows a larger deformation of the volume; therefore, it is most widely
used for numerical computation. Hirt et al. [1] proposed the arbitrary Lagrangian–Eulerian
(ALE) scheme using grids of which the vertices may move with the boundary, be held
�xed, or move in any other prescribed way. This report provides a fair assessment in relative
performance of these two kinds of approaches.
Lately, a number of techniques using the moving grids have been developed for various

applications. Demirdzic and Peric [2] extended the capability of numerical predictions of
the moving-boundary �ows to the problems with a domain of irregular shape. Gosman [3]
developed a RPM method for predicting in-cylinder processes within a reciprocating internal-
combustion engine based on the k–� turbulence model and related wall functions. Attention
of Hirt and Nichols [4] was focused on the development of a computational method by using
a combination of the deforming grid and the volume-of-�uid (VOF) technique. Recently,
Haworth and Jansen [5] used unstructured deforming meshes in a large-eddy simulation of
reciprocating internal-combustion engine �ows. Nkonga [6] used �nite volume method with
mesh relaxation, based on the modi�ed linear elasticity equations, to investigate the three-
dimensional �ow behaviour in the combustion chamber of a four-valve piston engine.
A constraint on the moving-grid approach, which is named the geometrical=space conserva-

tion law (GCL=SCL), was �rst discussed by Trulio and Trigger [7]. Demirdzic and Peric [8]
demonstrated that a violation of the space conservation law may result in false mass sources
and lead to great errors in the analysis of moving-boundary problems. A concept of integrated
space-time coordinate frame, on which the moving grids are constructed, was discussed by
Zwart et al. [9] and Guillard and Farhat [10]. In addition, the boundary tracking methods
used to satisfy the conservation laws for the compressible �ows with moving boundary were
presented by Falcovitz et al. [11], Koobus and Farhat [12], and Visbal and Gaitonde [13].
These existing numerical studies o�er valuable tools for understanding the structure of

moving-boundary �ows and provide insight not easily obtainable with experiments. However,
so far almost all the existing studies were performed for isothermal �ows and focused on the
velocity �eld only. Unfortunately, most systems encountered in practice involve a transient
change in temperature �eld during the reciprocating compression and expansion processes.
All the thermodynamic properties involving temperature of the �uid change continuously with
time; therefore, the �ow �eld inside a system cannot be determined independently without
knowledge of the distributions of other thermodynamic properties of the �uid. Hung and
Cheng [14] proposed a two-stage pressure-correction method which was successfully applied
to carry out the simultaneous solutions for temperature, density, absolute pressure and ve-
locity distributions in a piston–cylinder assembly. This method was also applied to evalu-
ate the pressure e�ects on natural convection for the non-Boussinesq �uid in a rectangular
enclosure [15].
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Stirling engines are power machines that operate over a closed, regenerative thermodynamic
cycle, with cyclic compression and expansion of the working �uid at di�erent temperature lev-
els, as described by Cheng and cowokers [16–18]. In a typical �-con�guration Stirling engine,
two separate pistons are equipped in a single or two separate cylinders with thermodynamic
cycle taking place in the closed space between the tops of the two pistons. Stirling engine
technology has come a long way in the past several decades. However, new concepts and
designs continue to emerge. Recently, interest in Stirling engines has resurfaced, with solar
electric power generation [19] and hybrid automotive applications in the forefront. Unfortu-
nately, detailed information regarding the �ow and thermal behaviour of the periodic �ow in
the two-piston engines is still not available. Under these circumstances, in the present study,
the numerical method proposed by Hung and Cheng [14] is extended to the analysis of the
�ows in an enclosure with two periodically moving walls to seek a fundamental understanding
of the physical phenomena in the two-piston engines.
This study is therefore concerned with transient variations in �ow and thermal �elds in

a rectangular enclosure with two periodically moving vertical walls shown in Figure 1. The
solution domain between the two vertical walls is of length D and height H. The left wall
(wall 1) is maintained at higher temperature TH, and the right wall (wall 2) is at lower
temperature TR. The two vertical walls move back-and-forth in between their bottom-dead
(BDP) and top-dead points (TDP) independently by

x1 = xi1 +
l
2
sin(2�ft) for wall 1 (1a)

x2 = xi2 +
l
2
sin(2�ft + �) for wall 2 (1b)

where l is the stroke and � is the phase angle of the oscillations of the walls. Note that
the strokes of the two walls are equal here. However, due to the existence of phase angle,
the length D is actually a function of time even though the strokes are equal. The enclosure
volume experiences compression and expansion periodically due to the relative motion of the
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Figure 1. An enclosure with two periodically moving walls.
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walls with phase angle �. On the other hand, the top and the bottom horizontal walls are
stationary and adiabatic.

THEORETICAL ANALYSIS

Governing equations

It is assumed that the air in the enclosure is compressible, homogeneous, and isotropic; the
�ow is considered as a laminar �ow and the works done by the gravitational and the vis-
cous forces are neglected. The conservation laws of space, mass, momentum, and energy in
dimensionless forms are derived as follows:

Space conservation:

d
dt̃

∫
cv
d–̃V =

∫
cs
Ṽb · dÃ (2)

Mass conservation:

d
dt̃

∫
cv
�̃ d–̃V =

∫
cs
�̃(Ṽ − Ṽb) · dÃ (3)

Momentum conservation for x-direction:

d
dt̃

∫
cv
�̃ũ d–̃V = −

∫
cs
�̃(Ṽ − Ṽb)ũ · dÃ −

∫
cv
(∇P̃ · i) d–̃V +

∫
cs
t̃x · dÃ (4)

Momentum conservation for y-direction:

d
dt̃

∫
cv
�̃ṽ d–̃V = −

∫
cs
�̃ṽ(Ṽ − Ṽb) · dÃ −

∫
cv
(∇P̃ · j) d–̃V +

∫
cs
t̃y · dÃ − B

∫
cv
(�̃− �̃E) d–̃V (5)

Energy conservation:

d
dt̃

∫
cv
�̃T̃ d–̃V =C1

d
dt̃

∫
cv
P̃ d–̃V −

∫
cs
�̃T̃ (Ṽ − Ṽb) · dÃ −

∫
cs
q̃ · dÃ

−C1
∫
cs
P̃Ṽb · dÃ+ C2 d

dt̃

∫
cv
P̃Ed–̃V − C2

∫
cs
P̃EṼb · dÃ (6)

where

B=
gH
U 2
R
; C1 =

U 2
R

CPTR
; C2 =

R
CP
; t̃x=[�̃ij] · i; t̃y=[�̃ij] · j

and the components of the stress tensor [�̃ij] are given by

�̃xy= �̃yx=
1
Re

(
@ṽ
@x̃
+
@ũ
@ỹ

)
; �̃xx=

2
Re

(
@ũ
@x̃

)
− 2
3
1
Re

∇ · Ṽ

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:353–369



NUMERICAL PREDICTIONS OF FLOW AND THERMAL FIELDS 357

and

�̃yy=
2
Re

(
@ṽ
@ỹ

)
− 2
3
1
Re

∇ · Ṽ

With the help of the dimensionless ideal-gas equation

�̃=
CP̃ + P̃E
T̃

(7)

where C=C1=C2, the initial hydrostatic pressure expression can be given as

P̃E = �̃E = e−(gH=RTR)ỹ=e−Fỹ (8)

where F = gH=RTR. Using Equation (8), the values of P̃E and �̃E appearing in Equations (5)
and (6) can be calculated. The above dimensionless parameters are de�ned by

x̃=
x
H
; ỹ=

y
H
; t̃=

tUR
H
; �̃=

�
�R
; �̃E =

�E
�R
; ũ=

u
UR
;

ṽ=
v
UR
; T̃ =

T
TR
; P̃=

P − PE
�RU 2

R
; P̃E =

PE
�RRTR

(9)

where UR =�fl, which is the characteristic velocity.
The dimensionless boundary and initial conditions for the problem can be expressed as

ũ=
dx̃1
dt̃
; ṽ=0; T̃ = T̃1 =TH=TR on wall 1 (10a)

ũ=
dx̃2
dt̃
; ṽ=0; T̃ = T̃2 = 1:0 on wall 2 (10b)

ũ= ṽ=0;
@T̃
@ỹ
=0 on top and bottom walls (10c)

with

x̃1 = x̃i1 +
L
2
sin

(
2̃t
L

)
and x̃2 = x̃i2 +

L
2
sin

(
2̃t
L
+ �

)

NUMERICAL METHODS AND SOLUTION PROCEDURES

The solution methods for solving these above equations use the framework concept of the
two-stage pressure-correction method proposed by Cheng and Hung [14]. The methods are
described brie�y in the following.

Two-stage pressure corrections

First-stage pressure correction. To calculate all the variables simultaneously, a staggered grid
system suggested by Patankar [20] is employed. For each variable, the algebraic discretization
equations are constructed by discretizing the integral governing equations over the grid cells.
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The SIMPLEC method, proposed by Van Doormaal and Raithby [21], and the power-law
scheme [20] has been modi�ed here to form the �rst stage of pressure correction. The purpose
of the �rst-stage pressure correction is to improve the guessed pressure P̃∗∗ such that the
updated velocity and density �elds will progressively approach the solutions satisfying the
continuity equation. Thus, using the concept suggested in References [20, 21], let

P̃∗= P̃∗∗ + P̃′ (11)

where P̃∗ and P̃∗∗ indicate the updated and the guessed pressures, respectively, and P̃′ is the
pressure correction. The density and velocity components respond to the correction of pressure
with

�̃∗= �̃∗∗ + �̃′ (12a)

ũ∗= ũ∗∗ + ũ′ (12b)

ṽ∗= ṽ∗∗ + ṽ′ (12c)

According to Equation (7), the relation between �̃′ and P̃′ can be described approxima-
tely by

�̃′ ∼ CP̃′

T̃
(13)

The correction terms of velocity components ũ′ and ṽ′ can be related to the pressure correction
by letting

�̃∗∗ũ′ ∼ −�@P̃
′

@x̃
(14a)

�̃∗∗ṽ′ ∼ −�@P̃
′

@ỹ
(14b)

The value of � should be determined at all the faces of the grid cells. Introducing
Equation (11) into the discretized continuity equation and following a procedure similar to
those described in References [20, 21], one obtains the �rst-stage pressure-correction equation
(P̃′-equation) as well as the relations for �.
Using the �rst-stage pressure-correction equation, a solution for P̃′ can be obtained. How-

ever, the updated pressure P̃∗ obtained in the �rst-stage pressure correction is not necessarily
the absolute pressure since P̃′ and P̃′ + C (C is an arbitrary constant) would both satisfy
the P̃′-equation. However, unless the solution of the absolute pressure is carried out, den-
sity and temperature of the gas must not be accurately evaluated. Further correction for the
updated pressure P̃∗ is required to yield the absolute pressure. Therefore, the second-stage
pressure-correction method described by Cheng and Hung [14] is used to yield the absolute
dimensionless pressure �eld.

Second-stage pressure correction. The updated pressure is improved by adding a constant
value P̃0 as

P̃∗n+1 = P̃∗n + P̃0 (15)
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where P̃∗n+1 is the updated dimensionless absolute pressure and the superscript n denotes the
nth step of iteration. Note that the velocity �eld satisfying the mass and momentum equations
is not altered at this stage by the addition of P̃0.
During the reciprocating compression and expansion process, the state of the matter within

the cylinder changes continuously, but the total amount of mass enclosed in the system remains
constant. That is, in dimensionless form∫ ∫

�̃(P̃; T̃ ) dx̃ dỹ=constant = m̃ (16)

The amount of mass m̃ is calculated based on the density distribution at the initial state de�ned
by the hydrostatic condition:

m̃=
1

�RH 2

∫ ∫
�E dx dy (17)

Meanwhile, the tentative mass at each time step is calculated by

m̃∗=
∫ ∫

�̃(P̃∗n+1 ; T̃ ) dx dy (18)

The density �eld is updated by introducing the updated absolute pressure until the require-
ment of the mass conservation is ful�lled. That is,∣∣∣∣ m̃∗ − m̃

m̃

∣∣∣∣ =
∣∣∣∣∣
∫∫
�̃(P̃∗n + P̃0; T̃ ) dx̃ dỹ − m̃

m̃

∣∣∣∣∣6� (19)

The value of P̃0 is determined by means of a shooting method until the requirement that
the overall mass of air should be equal to the initial mass is satis�ed. The tentative mass
at each time step is calculated and the density �eld is updated by introducing the updated
absolute pressure until the requirement of the overall mass conservation is ful�lled. In this
study, the mass residue for the overall mass conservation is set to be 10−10. By doing so, the
results are expected to provide not only the velocity �eld agreeing with the continuity and the
momentum equations, but also the correct absolute pressure information leading to the exact
overall mass.
In the present study, the computation has been performed by using 53× 53 grids in the

solution domain. The enclosure volume experiences compression and expansion periodically
due to the relative motion of the walls with phase angle �. At any instant, the grid lines divide
the new domain into a �xed number of control cells whose positions and volumes vary with
time. The moving grids deform in resonance with the walls to accommodate the variation in
the volume of the enclosure. Typically, the magnitude of �t̃ would have to be su�ciently
small so that the Courant number (�t̃ũb=�x̃) will be much less than unity. Therefore, �t̃ is
chosen to ensure the satisfaction with this condition.
E�ects of the frequency, stroke, and the phase angle of the wall oscillations on the �ow

are of major concerns. In this study, the frequency is ranged between 5 and 25Hz and the
dimensionless strokes (l=H) of the wall are varied from 0.4 to 1.0. The di�erence of the
dimensionless temperatures, T̃1 − T̃2, is �xed at 1.32, corresponding to the practical operation
temperatures of approximately TH =700K and TR =300K. These parameters are assigned
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Table I. Analysed cases.

Case Phase angle � Frequency f [Hz] Stroke l=H ˜T1 − ˜T2

1 0 15 0.8 1.32
2 �=6 15 0.8 1.32
3 �=3 15 0.8 1.32
4 �=2 15 0.8 1.32
5 2�=3 15 0.8 1.32
6 5�=6 15 0.8 1.32
7 � 15 0.8 1.32
8 7�=6 15 0.8 1.32
9 4�=3 15 0.8 1.32
10 3�=2 15 0.8 1.32
11 5�=3 15 0.8 1.32
12 11�=6 15 0.8 1.32
13 �=2 5 0.4 1.32
14 �=2 5 0.6 1.32
15 �=2 5 0.8 1.32
16 �=2 5 1.0 1.32
17 �=2 10 0.4 1.32
18 �=2 10 0.6 1.32
19 �=2 10 0.8 1.32
20 �=2 10 1.0 1.32
21 �=2 15 0.4 1.32
22 �=2 15 0.6 1.32
23 �=2 15 1.0 1.32
24 �=2 25 0.4 1.32
25 �=2 25 0.6 1.32
26 �=2 25 0.8 1.32
27 �=2 25 1.0 1.32

in accordance with the speci�cations and operation conditions of a laboratory-scale Striling
engine developed by Cheng and coworkers [22]. The combined in�uence of the movement
of the walls and the buoyancy as well on the convective heat transfer and the input power
required to move the walls is evaluated. The cases analysed herein are listed in Table I.

RESULTS AND DISCUSSION

Magnitude of Nusselt number represents the heat transfer performance between the hotter
and the colder walls, and the obtained numerical solutions for the temperature distributions
enable the heat transfer performance to be further estimated. Nusselt numbers on the moving,
vertical, isothermal walls are given by

Nu1(̃t)=
h1(t)H
k

(20a)

and

Nu2(̃t)=
h2(t)H
k

(20b)
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respectively, where the heat transfer coe�cients on the isothermal walls, h1 and h2, are
de�ned by

hi(t)= − k
H (TH − TR)

∫ H

0

@T (t)
@x

∣∣∣∣
i
dy; i=1; 2 (21)

Average Nusselt numbers are determined, when the periodically stable periods are reached,
by the following equation:

Nui=
�hiH
k
=
1
t̃P

∫
˜t+˜tP

˜t
Nui d� (22)

where t̃P is a dimensionless period of wall oscillation. Based on energy conservation principle,
the input power to the system required to excite the oscillation of the walls is equal to the
net output heat transfer rate to the surroundings. That is,

Ẇ = Q̇2 − Q̇1 (23)

where Q̇i= �hiH (TH − TR). Introduction of Equation (22) into Equation (23) yields
˙̃W =Nu2 − Nu1 (24)

where ˙̃W is the dimensionless input power de�ned by

˙̃W =
(Q2 −Q1)H
k(TH − TR)

Integration of input power with respect to time in a period of oscillation leads to the results
of input work per cycle. Therefore, one can readily calculate the required dimensionless input
work per cycle by

W̃ =
∫

˜t+˜tP

˜t

˙̃W dt̃ (25)

Figure 2 shows the transient variations of the dimensionless quantities, P̃, T̃ , ũ and ṽ in
the periodically stable periods, for case 4 with f=15Hz, l=H =0:8 and �=�=2. All values
are taken at the centre point of the enclosure. Note that the location of the centre point
is actually moved with time due to transient change of the enclosure space. It is observed
that all the quantities exhibit a periodic feature at the same frequency of the oscillation of
the walls. As shown in Figure 2(b), the dimensionless temperature at the centre point of
enclosure oscillates approximately between 1.65 and 2.05 with an average of 1.82, which is
higher than the average value of the isothermal wall temperatures (1.66). This is attributed to
the power input in the compression and expansion processes that increases the internal energy
of the air in the enclosure. It is found that the dimensionless temperature oscillates with the
dimensionless pressure without a time lag. In addition, the magnitude of ũ is much greater
than that of ṽ since the walls oscillate in the x-direction.
In order to have a deeper insight of the cyclic variation in the �ow and thermal �elds,

a number of snapshots of the velocity and the temperature distributions in a cycle in the
periodically stable region for cases 4 and 15 with l=H =0:8 and �=�=2 are shown in
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Figure 2. Periodic variation of dimensionless quantities for case 4, with f=15Hz,
l=H =0:8 and �=�=2, in the periodically stable periods. All values are taken at the

centre point of the enclosure at any instant.

Figures 3 and 4, respectively. The moving frequency of case 4 is 15Hz. The �ow �eld is illus-
trated by plotting the velocity vectors, and the thermal �eld by plotting the isotherms. During
the period in the cyclic process from t̃= t̃0 to t̃= t̃0 + 0:4̃tP, in Figure 3 the
dimensionless temperature reaches a maximum of 2.50 during the compression process. Be-
ing reminded of that the dimensionless temperature on the hotter wall is 2.32, one readily
expects a possibility of heat transfer output to the surroundings through the hotter walls. In
the expansion process after t̃= t̃0 + 0:5̃tP, the dimensionless temperature in the whole volume
is decreased. It is noticed that although the walls are under the in�uence of wall movement,
the buoyancy e�ects leading to the thermal boundary layers along the vertical walls are still
observed.
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Figure 3. Snapshots of velocity and temperature distributions in a cycle in the stable region for case 4,
at �=�=2, f=15Hz, l=H =0:8, and ˜T1 − ˜T2 = 1:32.

Figure 4 shows the variations in the �ow and the thermal �elds at a lower frequency
f=5Hz with case 15. At this frequency, it is found that the dimensionless temperature
reaches a maximum of only 2.41 in the compression process. However, the �ow in the
enclosure is still greatly a�ected by the driving e�ects of the moving walls; therefore, the
velocity vectors of the �uid adjacent to the two moving walls are nearly in resonance with
the moving velocity.
Figure 5 shows the variations in the Nusselt numbers on the moving walls for cases 15,

4, and 26, with f=5, 15 and 25Hz, respectively, at l=H =0:8 and �=�=2. Nusselt number
results on both the hotter and the colder walls are plotted. It is observed that the periodic
motion of the walls results in oscillation of the Nusselt numbers. As the oscillation frequency
is increased from 5 to 15Hz, the amplitudes of the oscillation of the Nusselt numbers are
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Figure 4. Snapshots of velocity and temperature distributions in a cycle in the stable region for case
15, at �=�=2, f=5Hz, l=H =0:8, and ˜T1 − ˜T2 = 1:32.

remarkably elevated. When the frequency is further increased to be 25Hz, the amplitudes
of the oscillation of the Nusselt numbers continue to increase. It is noticed that the Nusselt
number on the hotter wall (Nu1) appears to be negative in some certain periods of time,
as seen in Figure 5(c). A negative Nusselt number on the hotter wall indicates that heat
could also be rejected to the surroundings through the hotter wall once the �uid temperature
becomes higher than TH, as already mentioned earlier. In the high-frequency cases, more
power input is consumed to maintain the wall oscillation, and the compression and expansion
processes are severer; therefore, in these cases the �uid temperature exceeds the hotter wall
temperature TH.
Figure 6 shows the variations in dimensionless input power ( ˙̃W ) as a function of the phase

angle (�) at f=15, l=H =0:8, and T̃1 − T̃2 = 1:32, by showing the results associated with
cases 1–12. The values of ˙̃W are calculated by Equation (15) and indicated with circles in this
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Figure 5. Transient variations in Nusselt numbers at di�erent frequencies in the periodically stable
periods, at �=�=2Hz, l=H =0:8, and ˜T1 − ˜T2 = 1:32 (a) f=5Hz (case 15); (b) f=15Hz (case 4);

and (c) f=25Hz (case 26).

�gure. For the zero-phase-angle cases, both vertical walls move at the same speed and in the
same direction, and therefore the volume of the enclosure is moving but not deforming. In this
situation, the volume of the enclosure keeps constant so that the dimensionless power input
required for compression and expansion in a cycle is zero. As the phase angle is increased to
�, the dimensionless power input reaches a peak value of 0.54. This is because in the case
of �=�, the two vertical walls move in opposite directions exactly and hence, the magnitude
of the compression ratio, de�ned by the ratio of the maximum volume to the minimum in a
cycle, is higher than other cases. When the value of the phase angle is further elevated from
� to 2�, the dimensionless power input is gradually decreased to zero since the case at �=2�
is identical to the one at �=0.
Figure 7 shows the results of the dimensionless input work per cycle (W̃ ) as a function of

dimensionless stroke and frequency. Cases 4, and 13–27, all �xed at �=�=2 and T̃1−T̃2 = 1:32,
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are considered in this �gure. It is found that the value of the dimensionless input work per
cycle increases with the dimensionless stroke. Furthermore, for the cases with l=H varied from
0.4 to 1.0, an increase in frequency also results in an increase in W̃ . A comparison between
cases 16 and 27 in Table I shows that when the frequency is elevated from 5 to 25Hz at
high vibrating stroke l=H =1:0, and the required dimensionless input work per cycle may
be remarkably increased from 3.8 to 39.0. In other words, a higher vibration frequency or a
higher stroke requires a higher work input per cycle. However, as the dimensionless stroke
is within 0.4 and 0.8, an increase in the frequency from 15 to 25Hz leads to only a slight
increase in W̃ .

CONCLUDING REMARKS

The in�uence of the periodic movement of two vertical isothermal walls on the �ow pat-
tern and thermal characteristics of the mixed convective �ows in a rectangular enclosure is
predicted numerically. E�ects of the frequency, stroke, and the phase angle of the wall oscil-
lations on the �ow are evaluated. In this study, the frequency is ranged between 5 and 25Hz
and the dimensionless strokes (l=H) of the wall are varied from 0.4 to 1.0. Results regarding
the Nusselt numbers on the walls and the dimensionless input work required to excite the
wall oscillation are provided.
It is observed that all the quantities of P̃, T̃ , ũ and ṽ exhibit a periodic feature at the same

frequency of the oscillation of the walls in the periodically stable periods. The dimensionless
temperature oscillates with the dimensionless pressure without a time lag. In addition, the
magnitude of ũ is much greater than that of ṽ since the walls oscillate in the x-direction.
The periodic motion of the walls also results in oscillation of the Nusselt numbers. As the
oscillation frequency is increased, the amplitudes of the oscillation of the Nusselt numbers
are remarkably elevated. In addition, at a higher frequency, the Nusselt number on the hotter
wall (Nu1) may appear to be negative in some certain periods of time since heat could also
be rejected to the surroundings through the hotter wall once the �uid temperature becomes
higher than TH in the compression processes.
As the phase angle is assigned to be �=�, the dimensionless power input reaches a peak

value. This is because in that case, the two vertical walls move in opposite directions exactly
and hence, the magnitude of the compression ratio is higher than other cases. On the other
hand, in the cases of �=0 and 2�, the volume of the enclosure keeps constant, and therefore
the dimensionless power input required for compression and expansion in a cycle is zero. In
general, an increase in the frequency or the stroke of the wall oscillation results in an increase
in the required work input. However, for some particular cases, an increase in the frequency
leads to only a slight increase in the cyclic work input.

NOMENCLATURE

CP constant-pressure speci�c heat of air
D the distance between two moving walls
f frequency of the wall motion [Hz]
g gravitational acceleration
h heat transfer coe�cient

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:353–369



368 C.-H. CHENG AND K.-S. HUNG

H height of the vertical wall
l stroke of moving walls
L dimensionless stroke of moving walls, l=H
Nu Nusselt number, hH=k
Nu average Nusselt number
P absolute pressure
P̃ dimensionless pressure, (P − PE)=(�RU 2

R)
P̃E dimensionless hydrostatic pressure, PE=(�RRTR)
P̃0 second-stage dimensionless pressure correction
P̃′ �rst-stage dimensionless pressure correction
Q heat transfer rate
R gas constant of air
Re Reynolds number, URH=�
t time
t̃ dimensionless time, tUR=H
t̃P dimensionless period of wall oscillation
T temperature
TH hotter wall temperature
TR colder wall temperature
T̃ dimensionless temperature, T=TR
u; v velocity components in x- and y-directions
ũ; ṽ dimensionless velocity components, u=UR and v=UR
UR characteristic velocity, �fl

Ṽ; Ṽ dimensionless velocity vector
Ẇ input power
˙̃W dimensionless input power
W̃ dimensionless input work per cycle
x; y Cartesian coordinates
x̃; ỹ dimensionless Cartesian coordinates, x=H and y=H

Greek symbols

� phase angle of moving walls
� kinematic viscosity of air
� density of air
�R reference density
�̃ dimensionless density of air, �=�R

Subscripts

1 left wall
2 right wall
B bottom-dead point
b face of grid cell
E hydrostatic condition
T top-dead point
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